Behavioural correlates of an altered balance between synaptic and extrasynaptic GABAAergic inhibition in a mouse model.
نویسندگان
چکیده
GABAA receptors mediate fast phasic inhibitory postsynaptic potentials and participate in slower tonic extrasynaptic inhibition. Thy1alpha6 mice with ectopic forebrain expression of GABAA receptor alpha6 subunits exhibit increased extrasynaptic GABAA receptor-mediated background conductance and reduced synaptic GABAA receptor currents in hippocampal CA1 neurons [W. Wisden et al. (2002) Neuropharmacology 43, 530-549]. Here we demonstrate that isolated CA1 neurons of these mice showed furosemide-sensitivity of GABA-evoked currents, confirming the functional expression of alpha6 subunit. In addition, receptor autoradiography of the CA1 region of Thy1alpha6 brain sections revealed pharmacological features that are unique for alpha6betagamma2 and alpha6beta receptors. The existence of atypical alpha6beta receptors was confirmed after completely eliminating GABAA receptors containing gamma1, gamma2, gamma3 or delta subunits using serial immunoaffinity chromatography on subunit-specific GABAA receptor antibodies. Behaviourally, the Thy1alpha6 mice showed normal features with slightly enhanced startle reflex and struggle-escape behaviours. However, they were more sensitive to GABAA antagonists DMCM (shorter latency to writhing clonus) and picrotoxinin (shorter latency to generalized convulsions). Tiagabine, an antiepileptic GABA-uptake inhibitor that increases brain GABA levels, delayed picrotoxinin-induced convulsions at a low dose of 3.2 mg/kg in Thy1alpha6 mice, but not in control mice; however, the overall effect of higher tiagabine doses on the convulsion latency remained smaller in the Thy1alpha6 mice. Altered balance between extrasynaptic and synaptic receptors thus affects seizure sensitivity to GABAergic convulsants. Importantly, the increased extrasynaptic inhibition, even when facilitated in the presence of tiagabine, was not able fully to counteract enhanced seizure induction by GABAA antagonists.
منابع مشابه
Calpain and STriatal-Enriched protein tyrosine phosphatase (STEP) activation contribute to extrasynaptic NMDA receptor localization in a Huntington's disease mouse model.
In Huntington's disease (HD), the mutant huntingtin (mhtt) protein is associated with striatal dysfunction and degeneration. Excitotoxicity and early synaptic defects are attributed, in part, to altered NMDA receptor (NMDAR) trafficking and function. Deleterious extrasynaptic NMDAR localization and signalling are increased early in yeast artificial chromosome mice expressing full-length mhtt wi...
متن کاملHomeostatic competition between phasic and tonic inhibition.
The GABAA receptors are the major inhibitory receptors in the brain and are localized at both synaptic and extrasynaptic membranes. Synaptic GABAA receptors mediate phasic inhibition, whereas extrasynaptic GABAA receptors mediate tonic inhibition. Both phasic and tonic inhibitions regulate neuronal activity, but whether they regulate each other is not very clear. Here, we investigated the funct...
متن کاملLocation, Location, Location: Contrasting Roles of Synaptic and Extrasynaptic NMDA Receptors in Huntington's Disease
Abnormally enhanced N-methyl-D-aspartate (NMDA) receptor function is implicated in Huntington's disease (HD). In this issue of Neuron and a recent issue of Nature Medicine, an abnormal balance between the activity of NMDA receptors at synaptic (prosurvival) and extrasynaptic (proapoptotic) sites has been uncovered in a cellular and a mouse model of HD.
متن کاملEnhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses in the barrel cortex of Mecp2-null mice.
Rett syndrome (RTT) is a neurodevelopmental disorder that results from mutations in the X-linked gene for methyl-CpG-binding protein 2 (MECP2). The underlying cellular mechanism for the sensory deficits in patients with RTT is largely unknown. This study used the Bird mouse model of RTT to investigate sensory thalamocortical synaptic transmission in the barrel cortex of Mecp2-null mice. Electro...
متن کاملDysfunctional astrocytic and synaptic regulation of hypothalamic glutamatergic transmission in a mouse model of early-life adversity: relevance to neurosteroids and programming of the stress response.
Adverse early-life experiences, such as poor maternal care, program an abnormal stress response that may involve an altered balance between excitatory and inhibitory signals. Here, we explored how early-life stress (ELS) affects excitatory and inhibitory transmission in corticotrophin-releasing factor (CRF)-expressing dorsal-medial (mpd) neurons of the neonatal mouse hypothalamus. We report tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 20 8 شماره
صفحات -
تاریخ انتشار 2004